Overproduction and purification of RFC-related clamp loaders and PCNA-related clamps from Saccharomyces cerevisiae.

نویسندگان

  • Göran O Bylund
  • Jerzy Majka
  • Peter M J Burgers
چکیده

The replication clamp PCNA and its loader RFC (Replication Factor C) are central factors required for processive replication and coordinated DNA repair. Recently, several additional related clamp loaders have been identified. These alternative clamp loaders contain the small Rfc2-5 subunits of RFC, but replace the large Rfc1 subunit by a pathway-specific alternative large subunit, Rad24 for the DNA damage checkpoint, Ctf18 for the establishment of sister chromatid cohesion, and Elg1 for a general function in chromosome stability. In order to define biochemical functions for these loaders, the loaders were overproduced in yeast and purified at a milligram scale. To aid in purification, the large subunit of each clamp loader was fused to a GST-tag that, after purification could be easily removed by a rhinoviral protease. This methodology yielded all clamp loaders in high yield and with high enzymatic activity. The yeast 9-1-1 checkpoint clamp, consisting of Rad17, Mec3, and Ddc1, was overproduced and purified in a similar manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA

Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3'OH (3'DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader speci...

متن کامل

The PCNA-RFC families of DNA clamps and clamp loaders.

The proliferating cell nuclear antigen PCNA functions at multiple levels in directing DNA metabolic pathways. Unbound to DNA, PCNA promotes localization of replication factors with a consensus PCNA-binding domain to replication factories. When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling. Its modification by ubiq...

متن کامل

Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex.

The replication clamp PCNA is loaded around DNA by replication factor C (RFC) and functions in DNA replication and repair. Regulated unloading of PCNA during the progression and termination of DNA replication may require additional factors. Here we show that a Saccharomyces cerevisiae complex required for the establishment of sister chromatid cohesion functions as an efficient unloader of PCNA....

متن کامل

Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases.

BACKGROUND The high speed and processivity of replicative DNA polymerases reside in a processivity factor which has been shown to be a ring-shaped protein. This protein ("sliding clamp') encircles DNA and tethers the catalytic unit to the template. Although in eukaryotic, prokaryotic and bacteriophage-T4 systems, the processivity factors are ring-shaped, they assume different oligomeric states....

متن کامل

Stepwise assembly of the human replicative polymerase holoenzyme

In most organisms, clamp loaders catalyze both the loading of sliding clamps onto DNA and their removal. How these opposing activities are regulated during assembly of the DNA polymerase holoenzyme remains unknown. By utilizing FRET to monitor protein-DNA interactions, we examined assembly of the human holoenzyme. The results indicate that assembly proceeds in a stepwise manner. The clamp loade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods in enzymology

دوره 409  شماره 

صفحات  -

تاریخ انتشار 2006